
JOURNAL OF COMPUTATIONAL PHYSICS 72, 156-176 (1987) 

Taming the Ewald Sum in the Computer 
Simulation of Charged Systems 

D. J. ADAMS AND G. S. DUBEY 

Department of Chemistry, The Uziverslty, Southampton, SO9 SNH, United Kmgdom 

Received May 15, 1986; revised December 12, 1986 

The approximation of the Ewald summation for the potential energy of a system of charges 
with periodic boundary conditions, as used in the computer simulation methods of Monte 
Carlo and molecular dynamics, is discussed. Isotropic approximations are presented for 
calculations at low charge density. and systematic approximation using Kubic Harmonics is 
advanced as the best means for a more accurate approximation. The case of the potential 
energy of a periodic system of point dipoles is discussed and compared with the reaction-field 
method and with Ladd’s summation. ((3 1987 Academic Press, Inc 

1. INTRODUCTION 

Periodic boundary conditions (PBC) are an essential feature of most computer 
simulation studies of condensed matter using Monte Carlo or molecular dynamics. 
The PBC remove unwanted surfaces and enable a small number of particles to 
simulate a portion of an infinitely large system. The presence of charges, whether, 
for example, as ions or as a charge distribution on a neutral molecule, then presents 
a problem. The interaction between a pair of charges falls away only as l/r so that 
more distant periodic images can make a substantial contribution to the net energy 
of a charge and to the forces acting on it. This problem is acute for dense, highly 
charged systems such as molten salts and for polar dielectrics. Though a number of 
ways of summing the charge-charge (or dipole-dipole, etc.) interactions has been 
proposed, the only satisfactory method has proved to be the Ewald sum [l]. This 
exploits the periodicity of the lattice of charges, created by the PBC, to obtain an 
expression for the electrostatic energy in the form of two raplidly convergent sum- 
mations, one in real space and the other in reciprocal lattice space. There have been 
many derivations since Ewald’s original work, that of Tosi [2] we find particularly 
clear. 

For our purposes it is convenient to express the electrostatic energy per cell of a 
system of N point charges, (qz}, with PBC as 

where ru = rl - r,. 

(1) 
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The term qfS is the energy of the interaction between charge i and all its own 
periodic images; S is generally known as the “self term.” $(r) is an effective pair 
potential which is anisotropic and has the symmetry of the PBC. The Ewald sum 
gives, where here and throughout this paper r is expressed in units of cell length: 

W) = C 
erfc(cr /r-n/) 7-c 

-2 
n Ir-nj a A 

+c exp( - rc’k’/a’) 
Axk’ 

cos(2zk. r). 
k#O 

The (n) are the set of translation vectors of the PBC, A is the volume of the 
periodic cell, and the (k} are the set of reciprocal lattice vectors of the PBC. The 
effective potential t,b(r) is independent of the adjustable parameter a. In practice SE 
must usually be chosen with care as it determines the rates of convergence of the 
two summations. The self term is given by 

S = JiFo $(r) - l/r. 

When the system of charges is not neutral overall then the Ewald sum gives the 
energy of the charges in a uniform, neutralizing background so that, for example, 
Eqs. (l)-(3) can be used for the one-component plasma (OCP) without 
modification. Note that when the system is neutral then the second term in (2), 
-z/oc2A, cancels out when summed to get U. It is frequently omitted altogether as 
in, for example, Kittel’s [3] derivation of the Ewald sum. 

DeLeeuw et al. [4] have shown that a careful derivation in which the PBC are 
constructed layer by layer of cells to form a sphere in vacuum, which is t 
allowed to become infinitely large, produces another term to add to Eq. (I), 
Ix;“= 1 qlr21’ 2n/3A, which is proportional to the net dipole moment of the periodic 
cell squared. They show that this term arises in other derivations also if they are 
performed correctly. This additional term is the extrinsic potential of the periodic 
system [ 51. 

Equation (1) as given is called the intrinsic potential of the periodic system. 
corresponds to the periodic cell being a portion of a sphere of infinite size surroun- 
ded by a perfect conductor, the “tin-foil” boundary condition of classical elec- 
trostatics. 

This paper is concerned with the calculation of $(ir) and its gradient in ante 
Carlo and molecular dynamics computer simulations. Four distinct approaches to 
implementing the Ewald sum have been used. The most sophisticated is the p3rn 
method of Hackney and colleagues [6]. This puts the bulk of the calculation into 
the reciprocal lattice sum which is evaluated by fast Fourier transform. TQ do this it 
is first necessary to disperse the charges onto a coarse regular grid. Its most suitable 
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application is to very large two-dimensional systems such as the simulation of 
galaxies. 

The most popular method is the direct evaluation of the two summations. The 
real and reciprocal lattice summations are separately evaluated with appropriate 
truncations. The reciprocal lattice summation is much reduced by the use of the 
relationship [ 71 

cos(2zk . rij) = sin(2nk. r,) cos(2xk . r,) 

- cos(2zk . r,) sin(2rck. r,). (4) 

Nevertheless the accuracy of the summation only increases slowly with increasing 
numbers of reciprocal lattice vectors, and improved accuracy must be balanced, 
with diminishing returns, against extra computing time. The parameter c( has to be 
set with some care for best accuracy and may need to be adjusted for each 
individual calculation. 

A third method is to interpolate $(r) from a three-dimensional table, using the 
high symmetry of the cube to reduce the size of the table required [7]. Very good 
accuracy can be achieved [S], and this is a particularly attractive method for 
Monte Carlo which requires only t&r) and not V$(r). 

The fourth method is to approximate $(r) by a three-dimensional polynomial 
expansion, or some similar function of x, y, and z. As far as we aware this approach 
has only been applied to the study of the OCP by Monte Carlo, beginning with the 
pioneering work of Brush et al. [9]. However, it may equally well be applied to 
other charged systems using either Monte Carlo or molecular dynamics, and also to 
charge-dipole, dipole-dipole, and other electrostatic interactions. 

This paper is devoted to the implementation of the Ewald sum in the form of 
such expansions. The main reason for our interest was that it offers a simple means 
of performing the Ewald sum on a parallel processor, in our case the ICL DAP. 
However, it offers a number of advantages which make it the method of choice for 
a much wider range of machines. Most obvious are the shortness, the simplicity, 
and the economy of the code, and also the ease of “vectorization” for such 
processors as the Cray 1 and Cyber 205. A variety of expressions are available, 
offering a wide range of closeness-of-fit to the exact Ewald sum. It is a relatively 
easy matter to choose the appropriate expression as each has a known RMS error; 
there are no truncation limits or adjustable parameters to be set. Also, because the 
Ewald sum is expressed in the form of a well-defined pair potential, a problem with 
the evaluation of the currents required for the correlation functions used in Kubo 
formulae for transport coefficients is avoided [lo]. 

In the next section we discuss isotropic approximations to the Ewald sum, 
starting with the very simplest and going on to present expressions which compare 
favourably with any in the literature. Section 3 is devoted to the more accurate 
approximation of the Ewald potential and its systematic expansion in solutions to 
Laplace’s equation. Once a suitable approximation has been found for the Ewald 
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potential of a system of charges it is straightforward to obtain, by differentiation, 
expressions for the forces on charges, for charge-dipole and dipole-dipole interac- 
tions, etc. In Section 4 we illustrate this by deriving expressions for the potential of 
a system of point dipoles. 

2. SIMPLE, ISOTROPIC APPROXIMATIONS 

2.1. Nearest Images and PBC 

The exact Ewald $(r) has the periodicity of the PBC, but the expressions used to 
approximate it are not periodic and they will be valid only for r within a periodic 
cell centred on the origin. It is therefore necessary to use not rrJ but 

rL=r,--r,-n 2 

where the PBC lattice vector n is chosen to minimize ir/j. This is, of course, t 
normal procedure in calculating the short-ranged interactions, and ri- is called the 
“nearest-image” or “minimum-image” vector. The leading term in the real-space 
summation of (2) occurs for the minimum value of jr - nl and for 0: Ir - n/ --+ 0 we 
recover l/lr - nl, the direct Coulomb potential. The simplest approximation to 
$(r,,) is thus 

$o(r?l) = 1/ I$ + S (6) 

which has the important property that it is exact as \ri,j -+ 0. When the system of 
charges is neutral then the self-term makes no net contribution to the total energy 
and we may use 

the conventional form of the nearest-image summation. It is important to note that 
the summation must be taken over all pairs of charges in the periodic cell and not 
truncated at some radius, say one-half the cell length, as is commonly done with 
short-ranged potentials. Equation (7) has been used in the simulation of the restric- 
ted primitive model (RPM) with charges and densities appropriate to aqueous elec- 
trolyte solutions [ 111, the results were found to be number dependent. At higher 
charge densities Eq. (7) produces unphysical liquid structures [9, 12-141. 

The problem with Eq. (7) is that it is not merely approximate, it is also biased: it 
gives values of U close to the true Ewald result for some conligurations and very 
deviant values for other. Thus with simple cubic PBC it gives very good results for 
the Madelung constant of the NaCZ lattice, but can be a factor of four out for the 
Madelung constant of the CsCZ lattice [15]! Moreover, the improvement with 

581/72/l-11 



160 ADAMS AND DUBEY 

increasing number of charges in the periodic cell is slight at best [ 14, 151, and we 
cannot recommend the use of Eq. (6) or (7) under any circumstances. 

Unphysical liquid structures can result from the use of the nearest-image sum- 
mation because it favours configurations in which the coions around each ion 
occupy the corners of the periodic cell rather than an isotropic distribution [14]. 
One approach to this problem with the corners of the cell is to use a more spherical 
shape than the cube. The best is the truncated octahedral (TO) [16]. As we shall 
show, the use of TO PBC can have considerable benefits, but for the particular case 
of Eq. (7) there is no improvement in the RMS deviation between it and the Ewald 
sum. Using TO PBC rather than a simple cubic with Eq. (7) does give some 
improvement nevertheless, but not sufficient that we could ever recommend Eq. (7). 
Another simple way around the cube-corner effect is to modify the potential to 

(8) 

where ri is some cut-off radius, such as half the cell length. This does effect a sub- 
stantial improvement, but we do not recommend its use because there is an equally 
simple but very much better approximation to the Ewald sum. 

2.2. A Simple Approximation 

The Ewald IC/(r) contains a term in r2, the only component of $(r) which does 
not satisfy Laplace’s equation. The Y* term is a solution of Poisson’s equation; it is 
the contribution of the uniform, neutralizing charge distribution which the Ewald 
summation puts around each charge [9, 171. The addition of a term of this form 
gives 

$,(r)=I/r+S+A2Y2, (9) 

where it is understood that r is a nearest-image vector. $*(r) is the simplest 
approximation to the Ewald sum that we consider usable. The coefficient A, may 
be either the exact value [17], 2x/34, or adjusted to give the best fit of @Jr) to the 
true i&r). 

The various approximations were optimized and tested by finding the RMS 
deviation and maximum error of the approximation as compared to a highly 
accurate Ewald summation using a set of 100 to 300 vectors randomly distributed 
within the periodic cell. For both TO and simple cubic (SC) PBC Eq. (9) gave a 
roughly tenfold decrease in the RMS error over Eq. (6). The RMS error with 
TO PBC was insensitive to the value of A, and the exact coefficient gave a largest 
error close to the minimum. Exact values of S and A, are included in Table I. With 
SC PBC the adjustment to A2 = 1.38306 gave a twofold improvement over exact 
value, though the errors were still slightly larger than with TO PBC. 

An effective pair potential of similar form to Eq. (9) has been proposed before 
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TABLE I 

Exact Coefticients in Expansion of the Ewald Sum 

Sample cubic (SC) Truncated octahedral (TO) Rhombic dodecahedral 

l/2 
l/4 

-2.831291479 -3.639 233 450 4.584 862 074 
2.094 395 102 4.188 790 205 8.377 580 410 
1.770 566 707 -7.766 151015 -18.814 228 83 

22.073 177 64 209.692 430 9 -1025.443 397 
105.927 025 5 248.572 698 7 2638.559 709 
358.577 283 0 -3338.632 307 -541.599 922 4 

1306.319 992 -201.029 0 -114373.134 
558.709 501 3 149546.461 7 4439199.55% 

4861.343 067 64371.674 05 -1.228702912 x lo6 
18365.067 71 -501707.801 1 3.338552259 x IO6 

59.612 73 1073231.871 6.746060635 x lo6 
69319.501 11 -817007.0312 4.373749572 x 10’ 

-11189.890 02 45191429.79 -5.912420766 x lo9 
263204.159 3 12155258.42 5.810598389 x 108 

927.911 5 24158981.17 1.921613232 x lo9 

[I5], albeit on the basis of a very different argument. This approximation, called 
SC2 in Ref. [15], was shown to give comparable results to a direct Ewald sum- 
mation for the Monte Carlo simulation of the RPM at high charge density. SC2 
differs from Eq. (9) in that it has a limiting radius as in Eq. (7). Equation (9) gives 
smaller deviations from the Ewald sum than SC2 

Brush et al. [9] reported that the nearest-image summation, Eq. (6), gave a 
radial distribution function in agreement with the Ewald summation for the OCP 
with the coupling constant Fs 10. We have made some Monte Carlo calculations 
for the OCP with 64 charges in the TO periodic cell. The results for the average 
energy are given in Table II. Equation (6) contains a systematic deviation from the 
true $(r) that cancels in a neutral system; for the OCP it gives results grossly in 
error. The radial distribution function from Eq. (6) agrees with a more accurate 
summation at F= 10, is seriously in error at r= 40, and shows a strange, soli 
packing at r= SO and above. Equation (9) is dramatically better; the radial dis- 
tribution function is in good agreement with the more accurate results at g=40 
and at larger values of r it shows relatively small deviations. The main defect is that 
the height of the second peak is underestimated. 

However, the results for (U)/NkT are still seriously in error with Eq. (9f, show- 
ing it to be an inadequate approximation for the simulation of the OCP. Equation 
(9) wouid, however, be perfectly adequate for neutral systems where the elec- 
trostatic interactions do not dominate the structure, such as molecular fluids where 
the molecules’ charge distribution is modelled by a set of point charges. A better 
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TABLE II 

Monte Carlo Results for (U/NkT) of the OCP 

I- Eq. (6) Eq. (9) Eq. (10) Eq. (18), I=6 Ref. 1251” 

1.0 -3.19 -0.914 -0.573 a.580 -0.573 
4.0 -13.39 4.271 -2.909 -2.941 -2.927 

10.0 -34.2 -11.36 -1.943 -8.020 -7.992 
40.0 -141. 47.7 -34.04 -34.31 -34.248 
80.0 -286. -96.7 -70.04 -69.86 -69.715 

125.0 451. -151.9 -112.60 -110.03 -109.780 
160.0 -578. -195.3 -144.4 -141.83 -141.729 
180.0 451. -220.1 -165.0 -159.94 -159.675 
200.0 -723. -244.8 -183.6 -178.02 -177.619 
300.0 -1086. -368.1 -276.8 -267.94 -267.243 

a Reference 1251 calculations used 128 particles with simple cubic PBC. the rest used 64 particles with 
TO PBC. 

approximation is required for strongly polar dielectrics and systems with high 
charge densities. 

2.3. Good, Isotropic Approximations 

It has been common in the simulation of ionic glasses, where the charge density is 
high but the short-ranged interactions may be expected to be more important than 
the long-ranged part of the Coulombic interaction, to use a simple, isotropic 
expression in place of the true Ewald summation for reasons of economy. The early, 
uncritical approach was to use the leading term from the real space sum of Eq. (2) 
with an arbitrarily chosen value of a [18, 191. Better attempts at an isotropic 
approximation to the Ewald summation have since been made [20,21], with the 
force set to zero beyond half the (cubic) cell length. Soules [20] has provided 
separate prescriptions for electrostatic force and energy, suggesting that this 
approximation would be of general use in molecular dynamics. 

Soules’s energy approximation returns the best results when used without a trun- 
cation at half the cell length and with the correct value of the self term in place of 
the 0.3049512 factor of his Eq. (4). Even so, it has twice the RMS and maximum 
deviations of Eq. (9) with optimized A,. Optimizing the parameters produced a fac- 
tor of three improvement, giving as good a lit of an isotropic function to an 
anisotropic potential as could be expected. A similarly good result was obtained 
using TO PBC with an RMS error of -3 of that with SC PBC, demonstrating the 
superiority of the TO periodic cell. 

Considerable experimentation was devoted to obtain the best empirical, isotropic 
expression as an approximation to the Ewald sum, restricting the range of 
expressions to those which obeyed lim,, 0 Ii/(r) = l/r + S + 0(r2). Our best 
approximation, balancing closeness-of-fit against brevity, was for TO only 

$(I-)= l/r+(7.44030r2-19.04297r6+S) exp(r2). (10) 
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TABLE III 

Errors in Various Isotropic Approximations to the Ewald Sum 

Equation PBC RMS error Maximum error 

(9). exact A, 
(9), optimum A2 

(10) 
(11) 
(12) 

Soules’s expression, 
Optimized coefficients 

Soules’s expression [20] 

TO 0.66 1.08 
SC 0.51 0.79 
TO 0.044 0.117 
SC 0.061 0.193 
TO 0.0219 0.114 
TO 0.0291 0.126 
SC 0.042 0.157 
TO 0.0302 0.!51 
SC 0.041 0.149 
SC 0.131 0.416 

These values of the coefficients apply for the truncated octahedron which fits into a 
unit cube and thus has a volume of one half. More elaborate expressions gave only 
marginally better fits. Equation (10) is an improvement over Soules’s expression in 
two ways. First, it is a significantly better tit, as the results in Table III show. 
Second, it is shorter, requiring only 11 operations as against 16 for Soules’s 
expression. Equation (10) is particularly suitable for the DAP computer which, in 
matrix mode, computes an exponential or square root in roughly the same time as 
a simple multiplication [22]. 

On other machines the exponential is a problem, unless of course Eq. (IO) is used 
in tabulated form. For TO PBC the even shorter expression, 

$(r) N_ l/r + 3.53873r2 + 8.33958r4 - 28.51289r” + S !IIl 

is also better than the Soules form. With SC PBC the form of Eq. (10) does not give 
a particularly good lit. The SC PBC version of Eq. (11) is 

$(r) T l/r + 2.75022r2 - 2.94414r4 + 0.8691Qr6 + S. 

This is only marginally inferior to our optimized version of Soules’s expression. 
The results in Table II show that Eq. (10) gives good results for the OCP with 

rs 80, and is therefore a considerable improvement over Eq. (9). At higher r the 
results with Eq. (10) are not so satisfactory and, particularly in the solid phase, the 
peaks in g(r) are much higher and narrower than they should be. While Eq. (9) 
somewhat understates the structure, Eq. (10) considerably overemphasizes it. Thus 
we may expect Eqs. (lo)-( 12) to have the same range of application as Eq. (9) but 
to give a much better approximation to the true Ewald summation in that range. At 
high enough charge densities a systematic bias may give a substantial distortion of 
the structure of the simulated material. 



164 ADAMS AND DUBEY 

The OCP is unusual in having no short-range interactions so that its structure is 
entirely determined by the electrostatic interactions. A more typical system is the 
RPM and some Monte Carlo results have been obtained for this, using some of our 
approximations, for comparison with the results of Larsen [23]. The parameters of 
this system are the reduced density, p* = a3N/V, where (T is the ionic diameter and 
the charge coupling parameter, r= q2/akT, which is defined exactly as for the 
OCP, q is the charge and a = (3 V/47cN) ‘I3 Larsen [23] reported no noticeable . 
number dependence and the present results, obtained with 64 ions in TO PBC and 
given in Table IV, bear this out. For r< 10 the results for (U/NkT) using Eq. (10) 
are not significantly different from those obtained with more accurate 
approximations, and Eq. (10) is clearly adequate for T< -20 for most purposes. 
The radial distribution functions (RDF’s) show that Eq. (10) becomes less adequate 
with increasing density. At the lowest density, p* =0.2861, all the RDFs show 
satisfactory agreement with results from an accurate summation, while at the 

TABLE IV 

Monte Carlo Results for - (U/NkT) of the RPM 

P* r Eq. (10) Eq. (18), 1=6 Eq. (13) Ref. [23]” 

0.2861 2.0 0.838 0.841 0.843 0.839 
5.0 2.471 2.457 2.468 2.461 

10.0 5.487 5.451 5.443 5.465 
20.0 12.09 11.96 12.00 11.95 
50.0 33.8 33.33 33.3 33.62 

100.0 70.00 68.5 68.66 70.16 

0.4788 2.0 0.770 0.771 0.769 0.783 
5.0 2.236 2.245 2.235 2.226 

10.0 4.946 4.897 4.910 4.876 
20.0 10.78 10.565 10.595 10.53 
50.0 30.73 28.82 28.75 28.61 

100.0 62.73 60.13 60.06 59.91 

0.66902 2.0 0.736 0.748 0.722 0.756 
5.0 2.109 2.10 2.087 2.114 

10.0 4.594 4.58 4.53 4.601 
20.0 10.4 10.00 9.88 9.87 
50.0 27.5 26.55 26.44 26.54 

100.0 56.9 54.88 54.71 54.93 

0.75344 2.0 0.726 0.751 0.713 0.711 
5.0 2.076 2.073 2.058 2.067 

10.0 4.44 4.60 4.410 4.511 
20.0 10.63 10.12 9.67 9.58 
50.0 27.42 26.08 25.82 25.71 

100.0 55.1 53.6 53.21 53.26 

u Reference [23] calculations used 216 ions with simple cubic PBC, the rest used 64 ions with 
TO PBC. 
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FIG. 1. Radial distribution functions for the RPM with p* = 0.7534. r= 20. These show the largest 
deviations of ali the state points covered in Table IV: (a) Eq. (10). (b) Eq. (18), I= 6; (c) Eq. (13 )--an 
accurate summation. 

highest density, p* = 0.7534, the RDFs are satisfactory only for P”= 5, and 10. Note 
that the error does not necessarily increase monotonically with I-, the worst 
were at p * = 0.7534, r = 20. These are shown in Fig. 1. 

3. ACCURATE APPROXIMATIONS 

There is a clear need in many applications for a more accurate approximation 
than that provided by Eqs. (lo)-( 12). To obtain this +(r) must be approximate 
functions of cubic symmetry. An expansion of t&r) in powers of Y in any given 
direction converges rapidly, at least with TO PBC, and truncation at Y’* gives an 
RMS error of only - lo-*. The coefficients in this expansion depend on the direc- 
tion of r and can be approximated by angular functions of cubic symmetry, such as 

(Xk + yk + zk)/rk, k 3 4, 

(xyz)“/r’“, k>4, 

and 

(x”y k + y kZk + ZkXk )/Y Ik, ka 8, 
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where X, y, and z are the Cartesian components of r. Thus an empirical form for 
$(r) might be 

12 k,,, 

t,b(r)= l/r+S+A,r2+ c c AnkFkr”, 
n=4,6 k=O,l 

(13) 

where the Fk are angular functions such as those given above and F. = 1. 
An approximation of this form was made and sets of coefficients Ank were 

optimised for each value of IZ. With 53 coefficients the RMS error was -2 x 10e5. 
This approximation was used to obtain one of the sets of results given in Table IV 
and in Fig. 1. Much the same accuracy, however, can be obtained with a con- 
siderably shorter expression and we do not recommend the approach of Eq. (13). 

Apart from the early work of Brush et al. [9] there have been two anisotropic 
approximations to $(r) reported: that of Hansen [24] and that of Slattery et al. 
[25]. Hansen split Ii/(r) into an isotropic part and a part with cubic symmetry. The 
isotropic part was given by the leading term of the real-space sum in Eq. (2) with 
a = rc1j2. With this particular value of c1 Hansen’s approximation contains the exact 
value of A,. Slattery et al. [25] mistakenly claim the A,r* term to be missing in 
Hansen’s approximation. Hansen’s program evaluated the isotropic part by table 
look-up, but this can be replaced by an accurate approximation to the complemen- 
tary error function [26] when a vectorizable code is required. The part with cubic 
symmetry Hansen describes as “an ‘optimised’ expansion in Kubic harmonics,” He 
used the first three nontrivial angular functions multiplied by terms such as 
e~n’2(d8~* + d,,,v” + d,,ri2) with a total of 15 optimised coefficients and the exact 
self term. 

Using a 5-coefficient approximation for the complementary error function we 
obtain an RMS error of 7 x 10M4 and a maximum error of 1.6 x 10e3. The 
optimization of Hansen’s approximation for TO boundary conditions has not been 
done, but there can be little doubt that rather smaller errors would be obtained. 

Hansen’s approach is an efficient one, with a small error for the length of the 
computer other 

aesthetic. First, it gives even smaller errors for a given length of code and, second, it 
provides a tj(r) which, apart from the 

A,r* term, is an exact solution of Laplace’s 
equation. 

To find all the cubic solutions of Laplace’s equation of a given power, n, a 
methodical search was made. All terms of the form fybzCrP were considered where 
a, b, c, and p are zero or positive even integers and n = a + b + c +p. Polynomials of 
cubic symmetry were constructed by linear combination of these, for example 
(xy” + y2z4 + 2*x4 + x”y’ + y4z2 + 2”~“). Then substitution using r* = x2 + y2 + z2 
was used to eliminate those polynomials which were linear combinations of others, 
for example, 

(xyz)” = $r” - ir2T4 + fT6 (14) 
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where 

T,=x”+yn+zn~ (15) 

Those polynomials requiring the least computation were chosen as the minimum 
set. Finally, combinations of the minimum set were constructed to satisfy Laplace’s 
equation. Table V lists a complete basis set up to YE = 20, these are the a-set of the 
Kubic Harmonics of Von der Lage and Bethe [27]. For IZ < 12 there is one solution 
to Laplace’s equation for each n. For n = 12 there are two solutions of Laplace’s 
equation and both are needed. One, like the lower order solutions, is a combination 
of Legendre polynomials, PJx) + P&y) + P,,(z). For a second solution Slattery 
et al. [ZS] used 

Re[(x + iy)‘* + (y + iz)“* + (z-t ix)‘*] 

= 2T,, - 66(xyg + 22) +y’O(z’ +x2) + z10(x2 ty2)) 

+ 495(x8( y4 + z”) + y8(z4 + x4) + 2(x4 + y”)) 

- 924(x6y6 + y6z6 + z”x6). (16) 

This must have made a substantial contribution to the computing time o 
calculations, particularly as the calculation of these cross terms could not t 
advantage of the parallelism of the floating point systems processor they us 
second solution that we have obtained, KHb12 of Table V, is far more com- 
putationally convenient as the only term in it additional1 to those needed for KIY,, is 
simply (xYz)~. KHb,, is not a new, independent solution of Laplace’s equation but 
is related by 

Re[(x + iy)‘* + (y + iz)‘* + (z-t- ix)“] 

= 1025(KN,,) - 7128(KIS,,) 

There are two solutions each to Laplace’s equation at n = 16, 18, and 20. We have 
not explored beyond IZ = 20. Slattery et al. [25] did not use any other second 
solutions, but for simple cubic PBC their contribution to the Ewald summation is 
very small. 

The systematic expansion of the Ewald sum is thus 

$)(r)=l/r+S+A,r’ 

n=4,6 

for 4 < 1 d 20, 1 even, and B, = 0 except for n = 12, 16, 18, and 20. Successive terms 
get longer and it is necessary to weigh the required accuracy against the computing 
time required. As a rough measure of this a count has been made of the number of 
binary operations in the Fortran code for each value of 1. The exact coefficients in 
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TABLE V 

Kubic Harmonic Solutions to Laplace’s Equation: 
A Complete Basis Set Up to n = 20 

KN, 

KH6 

KH, 

KH,o 

KHb,z 

KH,, 

Kfh 

KH,, 

Kf%, 

Kffbo 

T4 - Jr4 5 

T6 - Er2T4 + sr6 77 

Ts - Qr’T, + WT4 - G8 13 39 

T,, - $r*T, + #r4T6 - gr6T4 +$&lo 

(XYZ)~ + &r’T,,, - &r4T8 + &r6T6 - $f&r8T4 - &r” 

T,, - ‘$$2T,2 + J$$r4T,, - @r6T8 f $f#r8T6 - &r”T4 + firI 

T,6-~r2T,4+~r4T,Z-~r6T,0+~r8Tg-~r’oT6 

+ $j&‘*T, - #j&l6 

(xxy8 + y8z8 + z*x”) + &r’T,, - &4(xyz)4 - Sf’T,, 

- #r6T,,, + $$r8T8 - &$i&r’“T6 - #&r12T4 + ar” 

T,, - $VT,, + yr4T1, - $$WT,, + 4&%8T,, - 4#r1°T8 

+ &,‘~T6 _ $&14T4 + 17.58 19~315r 16 

(xyz)” - &‘(x8y” + y8z8 + z8x8) + &r*T,, - &r4T,, + $r6(xyz)4 

+ j&6T,, - &$r8T,o + $$rl”Ts + &&r1’T6 - &r14T4 - $J&$rf8 

T,, - ~r2T,, + sr4T,, - mr6T,, + @j9r8T,2 

- gZ&JOTlo + @&lr’zT8 - $$%&14T6 + &@T4 _ 323 1164205r 20 

(xl”yl’ + y’“z”’ + z%‘~) + $r2(xyz)6 - $r’T,, - $&“(x8y8 + y8z8 + z8x*) 

+ j$jr4T,, - #r6Ti4 + $$fr8(xyz)4 + j@fr8T,, - ~r’“T,o + &$QlzT8 

+ $Ci&‘47-, - $&&.16~~ _ 1492591 181673980 pa 
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the expansion of $(r) have been calculated for SC, TO, and rhombic dodecahedral 
PBC to nine significant figures and these are given in Table I. These coefficients are 
for r measured in units of cell length, so that for all three boundary conditions /xl, 
lyl, and /z/ < +, and the expansions are rapidly convergent despite the high values 
of the coefficients. Additionally, values of coefficients have been adjusted to improve 
the RMS error and selected tables of these optimized coefficients are given in 
Tables VI and VII. For SC PBC the improvement on optimization is very 
considerable. Slattery et al. [25] took their optimized expansion up to I = 22 and so 
it is both longer and more accurate than any of our results in Fig. 2. Note that 
Hansen’s approximation [24] lies slightly above the line of optimized expansions 
and also that the best isotropic approximations, Eqs. (lo)-(12) are considerably 
more economic than $Jr) with comparable accuracy. 

Reducing the RMS error by a factor of ten increases the computing time for $jr) 
by about two and a half times. A highly accurate approximation can therefore be 
expensive. For many purposes ti6 with TO PBC or ti8 with SC PBC should be ade- 
quate. Some Monte Carlo calculations have been made for both the OC 
RPM using $6 with 64 charges in TO PBC, the results are in Tables II and IV an 
in Fig. I. Except for the most precise work $6 is shown to be perfectly adequate 
over the whole range of these data. Where great precision does seem required, for 
example, in the location of the phase transition of the OCP [S, 251 then, obviously, 
a more accurate expansion is required. However, there is no point in using so 
accurate an expression that its errors are dwarfed by those inherent in the use of 

TABLE VI 

Optimized Coefficients for Eq. (18) Using Simple Cubic PBC 

I 
8 10 12 16 20 

2.094395 2.094395 2.094395 
7.511320 7.704548 1.749439 

17.07159 20.56331 21.58047 
60.53989 86.42400 97.44609 

18f.0800 265.0164 
510.8133 

1917.2538 

2.4 x 10m3 6.2 x 1O-4 2.2 x 10-d 3.2 x lo-’ 

2.094395 
7710567 

22.07318 
105.9270 
352.1079 

1247.168 
138.637 

3462.959 
8003.836 
5424.535 

2.0943951 
1.7705667 

22.013178 
105.92703 
358.57728 

1292.8374 
590.2863 

r736.2504 
15877.120 
-362.617 

48168.946 
-164519.278 

95117.5750 
-32.0248 

5.2 x 10-e 
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TABLE VII 

Optimized Coefficients for Eq. (18) Using Truncated Octahedral PBC 

1 
6 8 10 14 18 

4.188790 4.188790 4.188790 4.188790 
-7.762017 -7.595989 -7.77621 -7.766151 

194.329 199.285 207.362 209.692 
208.641 251.058 248.573 

-2680.16 -3273.93 
-274.149 

132597.592 
49612.06 

4.188790 
-7.7661510 

209.6924 
248.5727 

-3335.138 
-192.134 

148881.138 
62622.301 

438790.41 
953890.99 

-531456.9 
33332228.2 

RMS error 4x 1o-3 1.3 x 10-r 3.3 x 10-d 2.5 x lo-’ 1.9 x 10-e 

-j , ,:: 

0 1 
log( length) ’ 

FIG. 2. Log-log plot of error vs length of expression (as number of binary operations) for various 
approximations using simple cubic periodic boundary conditions: +, Soules’s approximation [ZO]; 
a, Hansen’s approximation [24]; x , isotropic approximations, Eqs. (6), (9) and (12); 0, expansion in 
Kubic Harmonics with exact coefficients; 0, expansion in Kubic Harmonics with optimized coefficients; 
V, Slater et al. expansion [25]. 
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periodic boundary conditions: it is not the periodic system that is the ultimate goal 
but the ordinary bulk material. It is precisely in such cases as the location of the 
solid/liquid phase transition that the periodic cell, its volume, its shape, and 
exact number of particles can have a strong influence on the results. In such 
is invariably better to use a large number of particles, even at the sacrifice of 
to use a less accurate expression for t&r). 

A comparison of Figs. (2) and (3) shows the advantage of using TO boundary 
conditions over simple cubic. In most cases the extras involved in calculating the 
nearest-image vector are easily defrayed by improved precision of the 
approximation to $(r). The RMS errors are those found in the calculation of the 
energy of a pair of unit charges placed randomly in the periodic cell. When compar- 
ing TO with SC one should compare two cells of the same volume, and the 
errors are then reduced by a factor of 2 ‘I3 The exact expansion of $(r) with rh . 
bit dodecahedral PBC is comparable in accuracy to that with TO PBC, and the 
more complicated rhombic dodecahedral PBC are unlikely to give any wort~w~iI~ 
improvement over truncated octahedral. 

When using any of the approximations in this paper with molecules, every charge 
on each molecule should interact with the nearest image of every other in 
the system. The alternative strategy of computing nearest-image distances c?n 
the distance between molecular centres is not likely to introduce severe errors 
though. The direct, l/r, interaction between each charge and the other charges on 
the same molecule may be subtracted to obtain the intramolecular interaction: the 
interaction of a molecule with its own images is then correctly included as an 
intramolecular interaction. Additional considerations apply with polar molecules 
and this is discussed at the end of the next section. 

FIG. 3. Log-log plot of error vs length of expression for various approximations using truncated 
octahedral periodic boundary conditions: same key as for Fig. 2, with @. Eq. (13) with 53 coeff;ncients 
and x , isotropic approximations, Eqs. (6), (9), (lo), and (11). 
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4. DIPOLE-DIPOLE INTERACTIONS 

It is a most useful feature of all the approximations for Ii/(r) advanced in this 
paper, Eqs. (9)-( 12) and (18), that they are readily differentiated to obtain 
expressions for the forces between the ions needed for molecular dynamics 
simulation. If the potential of a charge, q, placed at the origin is qe(r), then the 
electric held at r is -Vq($(r). The energy of a point dipole in an electric field is 
-lo. E, so the energy between one dipole, IL, and one charge, q, in a periodic system 
and separated by vector r is p. Vq$(r). Likewise, the torque on the dipole is 
--p x Vq$(r) and the translational force on the dipole is -V(p. Vq$(r)). The 
charge experiences an equal and opposite force, hence the electric field due to a 
point dipole must be VP. V$(r) and the potential energy per cell between a pair of 
dipoles with PBC is -(pi. V)(pL2. V) i&r&,). With unit vectors II], given by 
pI = /cl,] ui, the potential energy of a periodic system of point dipoles, {pi}, is given 
by 

where the effective pair potential for dipoles is 

d(u,, u2, r) = 4~ 1 Wu2. V) $(r). (20) 

This is the Ewald-Kornfeld summation [28], similar expressions involving point 
quadrupoles have been derived [4,28]. The term p:S,, is the interaction of dipole 
i with its own periodic images, S,, = -4rc/3A [29]. Substituting $0, Eq. (6), into 
(20) one obtains 

3h . r)(u2 - r) r5 ) (21) 

the energy of a pair of dipoles without PBC. Substituting t,G2, Eq. (9), into (20) 
produces 

q52=q$J-2A2U1.U2. (22) 

This may be compared to the reaction-field expression of Barker and Watts [30]: 

r > a. 

(23) 

The approximation here is that a sphere of radius a is considered around each 
dipole. Within it, all dipole-dipole interactions are summed exactly. The dipoles 
outside the sphere are approximated by a dielectric continuum, of dielectric con- 
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stant cc, which is polarized by the dipoles within the sphere. Letting a, --+ XI, w 
is appropriate for the Ewald summation, the two expressions (22) and (23) will be 
the same for ~<a when a is the radius of a sphere of the same volume as the 
periodic cell, and the exact value of A, is used. 

Substitution of Eq. (lo), our best isotropic approximation, into Eq. (20) 
produces a rather clumsy expression, but Eqs. (If) and (12) provide simple 
isotropic approximations. For TO PBC, 

$(u,, u2, r) N (u, . u2)[l/r3 - 7.07746 - 33.35832r2 i 171.0773v4] 

+ (ul. r)(u2. r)[ - 3/r5 - 66.71664 + 684.3094~‘], 

and for SC PBC. 

q5(ul, u2, r)= (la, .u2)[X/r3-5.50044+ 11.7766u2-5.2146~~1 

+ (u, .r)(u2.r)[-3/r5 +23.55312-20.8584r2]. 625) 

These approximations are isotropic in the sense that they depend only on the angles 
between ul, u2, and r and not on their directions relative to the coordinate system 
defined by the PBC. 

Such angle-dependent terms do arise, of course, when the Kubic Harmonic 
expansion, Eq. (18), is used. Thus 

d4(uI, u2, r) = do - 2A2ul. u2 

+~~q((81.U*)r2+2(U1.rf(U2’r) 

-5u,+v*‘Y12), 

where R (n’ is a diagonal, dyadic tensor given by 

This is because 

-(u2.V)(u1.V)T,= -n(n-l)u,. 

Higher terms rapidly become more involved. The next is 

~6=~4+Ab(-30u1’R(4’.~Z 

+ %[2u,. u2 T, + 8(u,. r)(u2. Rc3’. I) 

+8(u,.r)(u,*R (3). I) + 12r’u, R”‘. uZ] 

- g[6r4u1. u2 + 24r2(u,. r)(u2. a)] > 

(27) 

where I= (I, 1, 1). 
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Ladd [ 311 has proposed an alternative to the Ewald-Kornfeld summation for 
systems with point dipoles and quadrupoles; only dipoles are discussed here. Each 
dipole in turn is considered to be at the centre of its periodic cell. It interacts with 
all the other dipoles in the periodic cell, i.e., nearest-image summation, and the 
dipoles in the periodically repeating cells outside are replaced by multipole expan- 
sions at their cell centres. The lattice sums have only to be done once for each order 
of multipole. The first non-zero contribution from the multipoles is the dipole- 
octopole term. This and higher terms can be written as effective pair potentials [32]. 
It has been recognized that Ladd’s approach is equivalent to the Ewald sum [4]. It 
is important to realize further that Ladd’s expression is identical, term 6~ term, with 
the expressions given by - (u2. V)(u, . V) $[(r), except that Ladd’s approximation 
does not include the “reaction field” term, - (4n/3d) ul. u2 [4]. For example, with 
a little reorganization it is found that the dipole-octopole term given by Ladd [32] 
is exactly the same as the term in d4 extra to &. The value of the coefficient given 
by Ladd [32] for this term is in precise agreement with the value of A, for SC PBC 
given in Table I. 

In addition to the problem of its bias the NI summation presents another dif- 
ficulty when used in the molecular dynamics simulation of systems of point-dipoles: 
there is an upward drift in the total energy [33]. This drift arises because the NI 
summation does not have the periodicity of the boundary conditions. Some 
approximations to the Ewald sum could also suffer from drift, in particular all 
isotropic approximations, Eqs. (22) (24) and (25). There is no corresponding 
problem with free charges. 

A most important consideration is the connection between the approximation 
used and the appropriate formulae for the dielectric properties. Neumann and 
Steinhauser [34] obtained the formula 

for the static dielectric constant. Extension to the dynamic properties is 
straightforward [35]. Though in practice a scalar, Q is related to the integral of the 
dipole-dipole tensor (with the singularity at r = 0 removed) taken over the periodic 
cell, 

Q = & jp, dv VV$(r). (311 

For Eq. (21) we have Q = 0 and for the reaction field, Eq. (23), 

(32) 

when the integral is taken over r < u. The exact Ewald summation corresponds to 
the “tinfoil” case where Q = 1. It is an important result of Neumann and 
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